MDS Vancouver

UBC’s Vancouver campus Master of Data Science program covers all stages of the value chain, with an emphasis on the skills required to apply meaning to data. Over 10 months, you will learn how to extract data for use in experiments, how to apply state-of-the-art techniques in data analysis, and how to present your findings effectively to domain experts.

Program Benefits

Highlights Across All MDS Programs:

  • 10-month, full-time, accelerated program offers a short-term commitment for long-term gain
  • Condensed one-credit courses allow for in-depth focus on a limited set of topics at one time
  • Capstone project gives students an opportunity to apply their skills
  • Real-world data sets are integrated in all courses to provide practical experience across a range of domains

Highlights Specific To Vancouver Campus Option:

  • Curriculum designed by combined computer science and statistics experts with input from local industry
  • A coordinated approach blending computer science and statistics education in order to give students a broader skill set
  • Courses are taught by a core team of faculty dedicated to teaching MDS full-time and providing support to students during the program.
  • A cosmopolitan city, sprawling campus, and a cohort of up to 100 students, offer an engaging, culturally enriched university experience
  • Strong connections with industry partners in public and private sectors, start-ups, and leading tech companies offer a wide range of networking/career opportunities


The program structure includes 24 one-credit courses offered in four-week segments. Courses are lab-oriented and delivered in-person with some blended online content.

At the end of the six segments, an eight-week, six-credit capstone project is also included, allowing students to apply their newly acquired knowledge, while working alongside other students with real-life data sets.

Fall: September - December

Block 1 (4 weeks, 4 credits)

Programming for Data Science | DSCI 511
Program design and data manipulation with Python. Overview of data structures, iteration, flow control, and program design relevant to data exploration and analysis. When and how to exploit pre-existing libraries.
Computing Platforms for Data Science | DSCI 521
How to install, maintain, and use the data scientific software “stack”. The Unix shell, version control, and problem solving strategies. Literate programming documents.
Programming for Data Manipulation | DSCI 523
Program design and data manipulation with R. Organizing, filtering, sorting, grouping, reformatting, converting, and cleaning data to prepare it for further analysis.
Descriptive Statistics and Probability for Data Science | DSCI 551
Fundamental concepts in probability including conditional, joint, and marginal distributions. Statistical view of data coming from a probability distribution.

Block 2 (4 weeks, 4 credits)

Algorithms and Data Structures | DSCI 512
How to choose and use appropriate algorithms and data structures to help solve data science problems. Key concepts such as recursion and algorithmic complexity (e.g., efficiency, scalability).
Data Visualization I | DSCI 531
Exploratory data analysis. Design of effective static visualizations. Plotting tools in R and Python.
Statistical Inference and Computation I | DSCI 552
The statistical and probabilistic foundations of inference, developed jointly through mathematical derivations and simulation techniques. Important distributions and large sample results. Methods for dealing with the multiple testing problem. The frequentist paradigm.
Supervised Learning I | DSCI 571
Introduction to supervised machine learning. Basic machine learning concepts such as generalization error and overfitting. Various approaches such as K-NN, decision trees, linear classifiers.

Block 3 (4 weeks, 4 credits)

Databases and Data Retrieval | DSCI 513
How to work with data stored in relational database systems. Storage structures and schemas, data relationships, and ways to query and aggregate such data.
Data Science Workflows | DSCI 522
Interactive vs. scripted/unattended analyses and how to move fluidly between them. Reproducibility through automation and containerization.
Regression I | DSCI 561
Linear models for a quantitative response variable, with multiple categorical and/or quantitative predictors. Matrix formulation of linear regression. Model assessment and prediction.
Feature and Model Selection | DSCI 573
How to evaluate and select features and models. Cross-validation, ROC curves, feature engineering, and regularization.

Winter: January - April

Block 4 (4 weeks, 4 credits)

Collaborative Software Development | DSCI 524
How to exploit practices from collaborative software development techniques in data scientific workflows. Appropriate use of abstraction, the software life cycle, unit testing / continuous integration, and packaging for use by others.
Privacy, Ethics, and Security | DSCI 541
The legal, ethical, and security issues concerning data, including aggregated data. Proactive compliance with rules and, in their absence, principles for the responsible management of sensitive data. Case studies.
Regression II | DSCI 562
Useful extensions to basic regression, e.g., generalized linear models, mixed effects, smoothing, robust regression, and techniques for dealing with missing data.
Supervised Learning II | DSCI 572
Introduction to numerical optimization (e.g., gradient descent). Neural networks and deep learning.

Block 5 (4 weeks + 1 week break, 4 credits)

Web and Cloud Computing | DSCI 525
How to use the web as a platform for data collection, computation, and publishing. Accessing data via scraping and APIs. Using the cloud for tasks that are beyond the capability of your local computing resources.
Statistical Inference and Computation II | DSCI 553
Bayesian reasoning for data science. How to formulate and implement inference using the prior-to-posterior paradigm.
Unsupervised Learning | DSCI 563
How to find groups and other structure in unlabeled, possibly high dimensional data. Dimension reduction for visualization and data analysis. Clustering, association rules, model fitting via the EM algorithm.
Spatial and Temporal Models | DSCI 574
Model fitting and prediction in the presence of correlation due to temporal and/or spatial association. ARIMA models.

Block 6 (4 weeks, 4 credits)

Data Visualization II | DSCI 532
How to make principled and effective choices with respect to marks, spatial arrangement, and colour. Analysis, design, and implementation of interactive figures. How to provide multiple views, deal with complexity, and make difficult decisions about data reduction.
Communication and Argumentation | DSCI 542
How to interpret and present data science findings to a variety of audiences. Written and spoken presentation skills.
Experimentation and Causal Inference | DSCI 554
Statistical evidence from randomized experiments versus observational studies. Applications of randomization, e.g., A/B testing for website optimization. Methods for dealing with the multiple testing problem.
Advanced Machine Learning | DSCI 575
Advanced machine learning methods, with an undercurrent of natural language processing (NLP) applications. Bag of words, recommender systems, topic models, natural language as sequence data, Markov chains, and RNNs for text synthesis. An introduction to popular NLP libraries in Python.

Spring: May - June

Capstone Project (8-10 Weeks, 6 credits)

Capstone Project | DSCI 591
A mentored group project based on real data and questions from a partner within or outside the university. Students will formulate questions and design and execute a suitable analysis plan. The group will work collaboratively to produce a reproducible analysis pipeline, project report, presentation and possibly other products, such as a dashboard.


Meet Tarini

The technical competency that Tarini developed during the MDS program helped in her career progression. What she learned at MDS was what are the right questions to ask and most importantly, how do you communicate all of your findings to a more general audience?